301

Small RNAs – The Big Players in Developing Salt-Resistant Plants

tolerance in tobacco. International Journal of Molecular Sciences, 20(10), 2391. https://

doi.org/10.3390/ijms20102391.

Yadav, N. S., Shukla, P. S., Jha, A., Agarwal, P. K., & Jha, B., (2012). The SbSOS1 gene

from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and

confers salt tolerance in transgenic tobacco. BMC Plant Biology, 12(1), 1–18. https://doi.

org/10.1186/1471-2229-12-188.

Yaish, M. W., Sunkar, R., Zheng, Y., Ji, B., Al-Yahyai, R., & Farooq, S. A., (2015). A genome-

wide identification of the miRNAome in response to salinity stress in date palm (Phoenix

dactylifera L.). Frontiers in Plant Science, 6, 946. https://doi.org/10.3389/fpls.2015.00946.

Yao, Y., Ni, Z., Peng, H., Sun, F., Xin, M., Sunkar, R., Zhu, J. K., & Sun, Q., (2010). Non-

coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Functional

& Integrative Genomics, 10(2), 187–190. https://doi.org/10.1007/s10142-010-0163-6.

Younis, A., Siddique, M. I., Kim, C. K., & Lim, K. B., (2014). RNA interference (RNAi)

induced gene silencing: A promising approach of hi-tech plant breeding. International

Journal of Biological Sciences, 10(10), 1150. http://dx.doi.org/10.7150/ijbs.10452.

Younis, M. E., Hasaneen, M. N., & Kazamel, A. M., (2010). Exogenously applied ascorbic

acid ameliorates detrimental effects of NaCl and mannitol stress in Vicia faba seedlings.

Protoplasma., 239(1–4), 39–48. https://doi.org/10.1007/s00709-009-0080-5.

Yuan, B., Latek, R., Hossbach, M., Tuschl, T., & Lewitter, F., (2004). siRNA selection

server: An automated siRNA oligonucleotide prediction server. Nucleic Acids Research,

32(suppl_2), W130–W134.

Yuan, S., Li, Z., Li, D., Yuan, N., Hu, Q., & Luo, H., (2015). Constitutive expression of

rice microRNA528 alters plant development and enhances tolerance to salinity stress and

nitrogen starvation in creeping bentgrass. Plant Physiology, 169(1), 576–593. https://doi.

org/10.1104/pp.15.00899.

Yuan, S., Zhao, J., Li, Z., Hu, Q., Yuan, N., Zhou, M., Xia, X., et al., (2019). MicroRNA396­

mediated alteration in plant development and salinity stress response in creeping bentgrass.

Horticulture Research, 6(1), 1–13. https://doi.org/10.1038/s41438-019-0130-x.

Zeng, J., Ye, Z., He, X., & Zhang, G., (2019). Identification of microRNAs and their targets

responding to low-potassium stress in two barley genotypes differing in low-K tolerance.

Journal of Plant Physiology, 234, 44–53. https://doi.org/10.1111/nph.13365.

Zhang, B. H., Pan, X. P., Wang, Q. L., George, P. C., & Anderson, T. A., (2005). Identification

and characterization of new plant microRNAs using EST analysis. Cell Research, 15(5),

336–360. https://doi.org/10.1038/sj.cr.7290302.

Zhang, B., (2015). MicroRNA: A new target for improving plant tolerance to abiotic stress.

Journal of Experimental Botany, 66(7), 1749–1761. https://doi.org/10.1093/jxb/erv013.

Zhang, B., Pan, X., Cannon, C. H., Cobb, G. P., & Anderson, T. A., (2006). Conservation

and divergence of plant microRNA genes. The Plant Journal, 46(2), 243–259. https://doi.

org/10.1111/j.1365-313X.2006.02697.x.

Zhang, B., Pan, X., Cobb, G. P., & Anderson, T. A., (2006). Plant microRNA: A small

regulatory molecule with big impact. Developmental Biology, 289(1), 3–16. https://doi.org/

10.1016/j.ydbio.2005.10.036.

Zhang, H., Zhang, H., Demirer, G. S., Gonzalez-Grandio, E., Fan, C., & Landry, M. P., (2020).

Engineering DNA nanostructures for siRNA delivery in plants. Nature Protocols, 15(9),

3064–3087. https://doi.org/10.1038/s41596-020-0370-0.

Zhang, J. L., & Shi, H., (2013). Physiological and molecular mechanisms of plant salt tolerance.

Photosynthesis Research, 115(1), 1–22. https://doi.org/10.1007/s11120-013-9813-6.